
Episode 67: Kevin Brock

Transcript

Welcome to Pedagogue, a podcast about teachers talking writing. I’m your host, Shane Wood.

In this episode, I talk with Kevin Brock about teaching and preparing graduate students to teach

technical writing, digital rhetorics, and how understanding the construction of software coding

impacts teaching writing.

Kevin Brock is associate professor of Composition and Rhetoric in the Department of English

Language and Literature at the University of South Carolina. His research and teaching interests

include digital rhetoric, rhetorical genre studies, technical and professional communication, and

writing program administration. His scholarly publications include the book Rhetorical Code

Studies (2019), several chapters in edited collections, and articles in such journals as Kairos,

Computational Culture, Computers and Composition, enculturation, JTWC, and Technoculture.

Kevin, thanks so much for joining us.

SW: How do you approach teaching technical writing at the University of South Carolina?

KB: At USC, or U of SC…I know that some folks are going to hear the USC acronym or

abbreviation and think Southern California, but in South Carolina we've got a class that's a 400-

level class on technical writing. Although, we're just going to start offering this coming fall a

300-level introduction to professional writing course, so there's some overlap in what the goals

are for those courses. I teach it not exclusively, but primarily for writing computer science and

engineering related documentation, specifically because the College of Computer Science and

Engineering at University of South Carolina requires this course explicitly for their students. At

any given semester, about two thirds to three fourths of the students are from that college, and

the remaining students come from a number of different departments, some English, some Mass

Communications, Marketing, Business, and so on.

I try to make sure when teaching this course that even though we have that focus for the majority

of students, there's a variety of contexts being discussed, a variety of genres that extend beyond

and are not specific to computer science or software development, and attempting to move

students from thinking about academic context to professional context, which I think anybody

who teaches a course remotely related to technical writing or another professional writing class is

going to know is super obvious. But for those who don't, it may be surprising to hear that many

students think about all of their writing by the time they're about to leave the university as being

university specific, because we've had so many pseudo-transactional assignments where you're

really writing to the instructor and you might give some lip service to a real imagined audience.

Trying to really focus them in a way that draws attention to those actual audiences, bringing in

real case studies, looking at real world examples of writing that they're doing and not just

textbook hypothetical examples, even though we also look at those, can be really helpful, and

students seem to respond more positively both during the class and afterwards, when sometimes

you hear back from students after they graduated, if they got a job or the like, that they want to

let you know about doing this kind of writing in contrast to academic writing, or writing with an

express academic purpose seems to be really useful.

Given the introduction of this 300-level course in the fall, we're going to see what we can

outsource from what would otherwise be a standalone technical writing course to being now part

of a growing professional writing curriculum we've got. At the University of South Carolina, in

addition to the technical writing course, in addition to the introduction to professional writing

course we're just offering, we also have a business writing course. Again, there's some

overlapping pieces, but that class is overwhelmingly taught to students in the business school.

Not surprising, right? Based on the labels here.

I think there's going to be some interesting opportunities to figure out, not only for me, but the

TAs who often staff the business writing sections and occasionally the technical writing sections,

what we want to do to set up foundations, to lead into the other courses while also recognizing

some students won't ever take the intro class, they'll only take that one class that they're required

to. It's an interesting time, and I'm looking forward to it, but I also recognize it's going to be a lot

of Jenga involved, so to speak.

SW: I want to transition slightly from undergraduate teaching to teaching graduate students. You

teach a class, a grad class called “The Teaching of Business and Technical Writing.” Can you

talk more about this class and how you prepare graduate students to teach technical

communication?

KB: Sure. Just like we've got that small number of classes at the undergraduate level so far, our

graduate program in rhetoric and composition doesn't really have much of an emphasis on

technical and professional communication the way that Michigan State does, or another school

where that's very much a strong foundation or cornerstone of the program. One of the ways that

we try and approach teaching this graduate level class is to keep in mind that we've got to do

some introduction to the field. We've got to do some introduction to the pedagogy related to that

field. We've got to introduce these grad students frequently to many of the kinds of contexts and

problem solving situations that we want the undergrads to get involved in, and many cases are

more familiar than the graduate students are because this is connected to the larger curriculum

they're in and they just haven't really focused on professional opportunities for writing yet.

But then also trying to think about how this class can serve, and for our department it serves as

the only additional pedagogical development class that we've got at the graduate level. After the

overwhelming number of our graduate teaching assistants take practica for our two first year

English core sequence, only those who are really interested in expanding their teaching

experience for other kinds of writing situations, like professional writing, whether that's an

expressed research interest for them or not, if they're just interested in teaching writing in a

variety of situations, this is the only opportunity they get to expand in that regard. We try to

emphasize how there's transfer of pedagogical knowledge from the other training they've had,

and the however many semesters of teaching they've got under their belt by the time they take

this teaching of this as a technical writing course.

But just like many of us are going to be familiar with dealing with grad students who may never

have been in the first-year English course, but have to teach first-year English, so too do we have

to talk about a number of different industrial situations, different workplace writing situations for

those grad students who not only may have never taken courses related to this, but might not, if

they're a student who's trying to move traditionally from undergraduate to graduate knowledge,

may not necessarily have had workplace experience. Discussing that can be real tricky too, when

we think about the fact that so many undergrads are juggling part or full-time work in addition to

taking these courses. There's a lot of very valuable scholarship in rhet/comp that can be brought

in, and in education that can be brought in, where giving students the agency to discuss these

experiences and how they approach these writing contexts...

Because not only have they done it in the past, they're probably literally doing it right after they

walk out the door from your class. I've had students in my technical writing course who literally

walk across the street to their job after the class, where they're doing the kind of work that we

just did in the classroom. It's really enjoyable to me to help introduce what's going on here and

how different and similar it is to thinking about writing, where we're trying to prepare students

for the university setting, for academic writing, and then say, okay, we've done that, and now

we're going to move them out of that academic context. Everything that they've written about

and read about in regards to knowledge transfer from FYC, suddenly, here it is. Right now, we're

going to do it. We're going to move it there. Most students respond very positively when they're

thinking about how they can step into that instructor role for those courses.

SW: In your book, Rhetorical Code Studies, you write about how software developers make

meaning through coding, and you talk about how software codes serve as meaningful acts of

communication to construct logic and arguments. What type of implications does this work have

in understanding digital rhetorics and the teaching of writing?

KB: If those of us who are interested in digital rhetoric want to try and pay attention to how we

are constructing meaning, communicating meaning through digital media, in addition to all the

ways that we already recognize we do, from super conventional stuff like sending emails, text

messages, Zoom, Skype meeting style, video sharing, website construction, and so on, it's also

important for us to pay attention to how we're constructing the platforms that enable us to do all

of that work. I don't want to suggest that the Rhetorical Code Studies book is the first to do that. I

hope that the way I articulate my argument might allow for more scholars and teachers in the

field who might have been skeptical of their ability to look at that, or skeptical of their ability to

talk about it, to be able to do so. Very frequently, in my experience anyway, the majority of such

discussion occurs when one or more scholars are prioritizing that kind of exploration. One of the

best books to come out in the past couple of years, by a scholar in communication, Sophia

Nobles, Algorithms of Oppression, gives us an excellent opportunity to talk about how search

engine technologies are reifying particular racist ideologies.

Trying to call attention to the way that we, we being software developers, or the way software

developers write programs, the thought processes involved in them, the kinds of arguments they

find themselves making not only in how particular logical structures are constructed to perform

particular tasks, but also how that code is meant to be readable or not to other human beings who

may be involved in also developing the same project, or who might come across it in the future if

it's an open source or otherwise freely available set of code, that can be really valuable to us.

We're talking about a kind of writing where there are billions of lines of code written every day.

Sometimes we don't have access to them. Microsoft, Amazon, and so on are not necessarily

always going to let us see what's going on there, but this writing's happening. For a field that

calls itself writing studies, this is going to be an area, theoretically, of interest to us who are

interested in digital writing.

SW: How does software coding and understanding the construction of coding impact or

influence your teaching and what teaching writing does?

KB: Recognize, and we get a number of different kinds of writing classes…the first caveat I'll

note, just in case anybody might be feeling super anxious right now about teaching writing and

the discussion about programming, is that I really don't involve this much in my first-year

writing courses at all. However, for upper-level writing courses, whether that's writing for the

web or other digital environments or technical writing, it can be really useful to help students

identify kinds of writing that they encounter all the time, especially those like computer science

and engineering students, but also anybody who looks at web pages, if we're looking at HTML

and CSS as a different kind of coding, doing that markup.

It's an interesting, for me, demonstration of the Lanham’s oscillation of hypermediate and

immediate at versus through...many students, overwhelmingly in my anecdotal experience,

students who've done any kind of code writing in the past don't initially think about their own

work as writing. They don't see it as writing, but they are absolutely and immediately happy to

talk about how other people's code has given them a reaction that we would identify as

rhetorically meaningful. Like, I hate how that's written, that guy sucks; or they didn't comment it

at all, so I can't understand what's going on; or I disagree with the way that they've built the logic

of that particular function. It's all kinds of stuff that we would expect audiences to do, but for

whatever reason, there tends to be initially this blind spot of, I'm doing rhetorically meaningful

writing when I do this thing. If I can see other people doing it, I'm also doing this.

That sort of shift can be really useful. Even though I'm not necessarily teaching a course on

programming per se, some of the genres that I'm asking students to engage in, or sometimes

they've got a range of options, and students will choose some that they might feel more

comfortable with than others, like writing documentation for software, sometimes involves

refactoring their code, which is rewriting it to be what we would call more elegant, as an

attribute relating to software development, where the code does something. There's aesthetic

component that's hard to describe, but it involves the code being generally shorter, not repeated.

That is, if you're thinking something happen, you call to it in a modular fashion. It's relatively

human readable, so you're not just looking at it, but what seems to be gibberish, perhaps, for the

individual who doesn't do any code, but something that approximates, to the extent that a

language allows it, something that might look like English, for example.

There have been decades of computer science scholars who've made similar arguments. Some of

the points I make in the book are based on computer scientists arguing for similar kinds of work,

where...Donald Knuth is a luminary in the field. He says the best kind of code is one that doesn't

need comments. I mentioned that a few times now: Comments are lines of code that are not read

by machines. They're only there for other human beings to understand what's going on. You

might write up something that adds two numbers together, so you might have a comment that

says, I'm adding these together for this purpose, and the machine reads past it. Doesn't care. For

Donald Knuth, the best code is code that doesn't require comments, because it's already so

human readable.

Which, again, is something that I think we as rhetoricians really value, is how can we make sure

that the work we're doing in our writing is accessible to both the intended audience, but also

potentially secondary or tertiary audiences. When we're writing with that kind of idea in mind,

how does that impact the kind of language we use, the way that we might arrange a particular

argument? How are we providing a kind of style that's readable in the code? Here I'm talking

about some things that might be as trivial sounding as indenting lines.

SW: What technologies do you incorporate in the writing classroom, and what would you say are

some advantages to incorporating those technologies?

KB: I would say, at the broadest level, I try to adhere to very similar principles to those described

in Karl Stolley’s “The Lo-Fi Manifesto” that was published in Kairos a while ago, and then I

think he published a version two of it more recently, where the argument is for plain text writing

that can be formatted. Whether that's plain text or marked down versus locking in your writing to

a proprietary platform or one that's not very adaptable to other environments. Very frequently

we'll have conversations, my classes and I, about, do you want to use Word? Because the

University of South Carolina has an Office 365 contract for all students, so they've got access to

it, but I know some might prefer Google Docs, because for whatever reason, maybe they prefer

writing on their tablet or phone or just in their browser versus Microsoft. Cool.

We'll talk about the file formats that interest us more than the specific program that they wrote

in. If it allows for that, how does it seem to do that, what happens when we need to double check

what's going on? For a long time, Microsoft Office and LibreOffice were not as compatible as

they are now. While I've written in LibreOffice for a long time, I really had to always double

check before I sent off a .doc file that had been saved in the LibreOffice, that it would work in

Microsoft Word. Then we'll talk PDF as a way to lock in the format, if we're really going in that

direction.

For assignments or classes that expressly focused on web writing, we'll, again, talk about text

editors. Those that allow syntax highlighting, which matters for code languages of various kinds.

You can see even something as simple as HTML, in the markup there, are the tags opening and

closed correctly? Students get some freedom in my class about what programs they choose based

on what might be familiar or comfortable to them. What matters to us is what you can do, to

make the files you create useful in the ways that matter to us and our audiences. Many students,

again, because I'm teaching primarily computer science and engineering students, will submit

files to me through Git, hosted through GitHub, but with the Git program. Not only discussing

uploading documents through our LMS versus via email, which we try to avoid, but giving them

this opportunity to “submit” (in air-quotes) their work through a site like GitHub, which is

something that reflects the kind of work they'll do in a professional setting. It feels wrong to me

to restrict that rather than to promote it as a way to reduce that pseudo-transactional feeling as

much as possible. So long, again, as they're doing so as accessibly as they can, as modularly

extensible as they can.

SW: Thanks, Kevin. And thank you Pedagogue listeners and followers. Until next time.

